UWME and Probabilistic Spread-Skill Relationships

Eric P. Grimit
University of Washington

Acknowledgements:

Clifford F. Mass F. Anthony Ecke

DoD MURI administered by ONR
A Consortium of Federal and Local Agencies
National Weather Service

Part I:

The University of Washington Mesoscale Ensemble (UWME)

A Little History

- The UW mesoscale ensemble (UWME) system was borne out of experience with a high-resolution (down to 4-km) local MM5 effort.
- Specifically, although high resolution produced better (sharper, high amplitude) structures in general, the forecasts verified only marginally better than lower resolution forecasts using traditional measures.
- UW research revealed large differences, and thus uncertainty, in the initializations of, and MM5 forecasts based on, major operational forecasting systems [McMurdie and Mass, WAF 2004].
- Subjective verification showed that approximately 12-km grid spacing was needed to capture major regional mesoscale features.
- Thus, it was natural to create a 12-km mesoscale ensemble system for the Northwest.

The UW SREF Approach

- Create an effective mesoscale SREF system capable of:
 - producing skillful forecast probability
 - providing researchers with a rich data set to answer some basic questions:
 - Does an ensemble need to be made up of equally likely solutions to be useful?
 - How much can be accomplished with easily acquired resources?
 - What is the relative importance of model inadequacy compared to initial uncertainty?
- The basic idea is that differences in the analyses of various operational centers are a valuable measure of IC uncertainty.
 - Analysis differences reflect different data inventories, assimilation schemes, and model physics/numerics.
 - Analysis differences can be large, often greater than observation errors themselves.
 - Designed a multi-analysis-based ensemble system to capitalize on these differences.
 - 5-member multi-analysis system, 2000-01 (Grimit and Mass, WAF 2002)
 - 7-members, 2001-02 (Mass et al., BAMS 2003)
 - 8-members, 2002-current (Eckel and Mass, accepted WAF)
- Encouraged by contemporaneous work by David Richardson (ECMWF), Beth Ebert (BOM-Australia), and David Baumhefner (NCAR).
 - Multi-analysis ensembles competitive and appropriate in short-range
 - IC perturbations at synoptic scales yield predictability error growth at ALL scales

Multi-Analysis Sources | Paralution (~ @ 45 %) | Objective

			Resolution (Objective	
	Abbreviation/Model/Source	Type	Computational	Distributed	Analysis
NCEP	avn, Global Forecast System (GFS),	Spectral	T254 / L64	1.0° / L14	SSI
NCEP	National Centers for Environmental Prediction		~55 km	~80 km	3D Var
*	cmcg , Global Environmental Multi-scale (GEM),	Finite	0.9°×0.9°/L28	1.25° / L11	3D Var
	Canadian Meteorological Centre	Diff	~70 km	~100 km	
NCEP	eta, limited-area mesoscale model, National Centers for Environmental Prediction	Finite Diff.	32 km / L45	90 km / L37	SSI 3D Var
	gasp , Global AnalysiS and Prediction model, Australian Bureau of Meteorology	Spectral	T239 / L29 ~60 km	1.0° / L11 ~80 km	3D Var
	jma , Global Spectral Model (GSM), Japan Meteorological Agency	Spectral	T106 / L21 ~135 km	1.25° / L13 ~100 km	OI
	ngps , Navy Operational Global Atmos. Pred. System, Fleet Numerical Meteorological & Oceanographic Cntr.	Spectral	T239 / L30 ~60 km	1.0° / L14 ~80 km	OI
Neathbright St.	tcwb , Global Forecast System, Taiwan Central Weather Bureau	Spectral	T79 / L18 ~180 km	1.0° / L11 ~80 km	OI
Met Office	ukmo , Unified Model, United Kingdom Meteorological Office	Finite Diff.	5/6°×5/9°/L30 ~60 km	same / L12	3D Var

UW Mesoscale Ensemble System

- Limited-area mesoscale modeling system (MM5)
- 2-day (48-hr) forecasts at 0000 UTC in real-time
 - Since January 2000
- Current 36-km and 12-km domains:

Configurations of the MM5 short-range ensemble grid domains. (a) Outer 151×127 domain with 36-km horizontal grid spacing. (b) Inner 103×100 domain with 12-km horizontal grid spacing.

GFS-MM5 too slow bringing precipitation. Could ensembles have given us some warning?

Init: 00 UTC Thu 30 Jan 03

Valid: 21 UTC Thu 30 Jan 03 (13 PST Thu 30 Jan 03)

Real-time Deterministic 21-h Forecast

Mesoscale Forecast Probability

- ➤ The primary goal: create skillful, mesoscale forecast probability.
- \triangleright In a large, ideal EF system, Forecast Probability (FP) = Observed Relative Frequency (ORF)

Mesoscale Forecast Probability

Observation-based verification at MOS locations in 12-km domain.

UWME FP is calculated using Democratic Voting.

- Democratic voting (DV) method provides PoP forecasts as good as NGM MOS.
- Currently Using <u>Uniform Ranks</u> (UR) method. <u>UR is likely</u> <u>better</u>. Calibration would provide further improvements.

UW's Ensemble of Ensembles

	Name	# of Members	EF Type	Initial Conditions	Forecast Model(s)	Forecast Cycle	Domain
Imported Homegrown	ACME	17	SMMA	8 Ind. Analyses, 1 Centroid, 8 Mirrors	"Standard" MM5	00Z	36km, 12km
	UWME	8	SMMA	8 Independent Analyses	"Standard" MM5	00Z	36km, 12km
	UWME+	8	PMMA	8 Independent Analyses	8 MM5 variations	00Z	36km, 12km
	PME	8	MMMA	8 Independent Analyses	8 operational, large-scale	00Z, 12Z	36km

SMMA: Single Model Multi-Analysis

PMMA: Perturbed-model Multi-Analysis

MMMA: Multi-model Multi-Analysis

ACME: Analysis-Centroid Mirroring Ensemble

PME: Poor Man's Ensemble

MM5: 5th Generation PSU/NCAR Mesoscale Modeling System

Design of UWME+

• Perturbed surface boundary parameters according to their suspected uncertainty

Research Dataset

- ➤ Total of 129, 48-h forecasts (31 Oct 2002 28 Mar 2003) all initialized at 00z
 - Incomplete forecast case days are shaded

> Parameters:

- 36-km Domain: Mean Sea Level Pressure (MSLP), 500mb Geopotential Height (Z_{500})
- 12-km Domain: Wind Speed at 10 m (WS_{10}), Temperature at 2 m (T_2)

Verification:

- 36-km Domain: <u>centroid analysis</u> (mean of 8 independent analyses, at 12-h increments)
- 12-km Domain: <u>ruc20 analysis</u> (NCEP 20-km mesoscale analysis, at 3-h increments)

Note: Global PME data was fitted to the 36-km domain

Gridded, Mean Bias Correction

For the current forecast cycle:

1) Calculate bias at every grid point and lead time using previous 2 weeks' forecasts

$$b_{i,j,t} = \frac{1}{N} \sum_{n=1}^{N} \left(\frac{f_{i,j,t}}{o_{i,j}} \right)_n$$

N number of forecast cases (14)

 $f_{i,j,t}$ forecast at grid point (i,j) and lead time (t)

 $o_{i,i}$ observation (centroid-analysis or ruc20 verification)

2) Postprocess current forecast to correct for bias:

$$f_{i,j,t}^* = \frac{f_{i,j,t}}{b_{i,j,t}}$$

 $f_{i,j,t}^*$ bias-corrected forecast at grid point (i,j) and lead time (t)

Uncorrected UWME+ *T*₂

Bias-Corrected UWME+ *T*₂

Multimodel Vs.
Perturbed-Model

PME Vs. UWME+

Comparison of VRHs

- > *PME exhibits more dispersion than *UWME+ because
 - *PME (a multi-model system) has more model diversity
 - *PME is better at capturing growth of synoptic-scale errors

"Nudging" MM5 outer domain may improve SREF

Verification Rank Histogram

Record of where verification fell (i.e., its rank) among the ordered ensemble members:

Flat Well calibrated EF (truth's PDF matches EF PDF)

U'd Under-dispersive EF (truth "gets away" quite often)

Humped Over-dispersive EF

Comparison of Skill

BSS = 1, perfect
BSS < 0, worthless</pre>

Value of
Model Diversity
For a Mesoscale SREF

UWME Vs. UWME+

Comparison of Skill

BSS = 1, perfect
BSS < 0, worthless</pre>

Skill for $P(WS_{10} > 18 \text{ kt})$

Conclusions

- ➤ <u>Multianalysis Approach</u> for Representing Analysis Uncertainty
 - Contributes to a skilled SREF
 - Analyses too highly correlated at times—miss key features
 - Limits EF size to number of available analyses
 - Mirroring produces additional, valid samples of the PDF (i.e., from UWME) but cannot correct deficiencies in original sample
 - More rigorous approach would be beneficial to SREF
 - •UWME is a benchmark for more optimal systems

Bias Correction

- Particularly important for mesoscale SREF where model biases are large
- Significantly improves SREF utility by correctly adjusting the forecast PDF
- Allows for fair and accurate analysis

The Future

- UWME is still in its early stages.
 - Several active research projects involving diverse groups
 - NOAA C-STAR (mesoscale EnKF data assimilation, gridded bias removal)
 - DoD MURI (interactive forecast system to handle/visualize forecast uncertainty)
 - Considerable improvement/expansion is planned.
 - Expand to include both cycles (1 May 2004)
 - Implement FDDA/"nudging" on 36-km domain all members (1 May 2004)
 - Implement a number of post-processing approaches: gridbased bias correction, Bayesian model averaging, Ensemble MOS (EMOS)

The Future

- UW can serve as a regional testbed center for mesoscale ensembles.
 - UW can test various mesoscale ensemble and ensemble postprocessing approaches for use at NCEP and other modeling centers.
 - UW can test the use of mesoscale ensembles in environmental prediction applications
 - Hydrology/streamflow
 - Air quality
- NOAA-UW relationship is collaborative
 - Experimental UWME products at NWS-Seattle
 - Probability and Mean & Spread data in AWIPS
 - UWME PoP in IFPS
 - Extended-run MM5 for IFPS
 - Would like to compare NCEP SREF with UWME
 - · Multianalysis method may be surprisingly difficult to beat
 - · Other methods? ETKF?

http://www.atmos.washington.edu/~ens/ensemble.cgi

End of Part I

Success and Failure of ACME Vs.
ACME

Comparison of Verification Rank Histograms

36-h *MSLP*

Verification Rank Histograms for...

36-h *MSLP* ----→

36-h WS₁₀ ----→

36-h T₂ ----→

